EFFECTS OF EXPOSURE TO MUNICIPAL WASTEWATER IN SITU ON THE REPRODUCTIVE PHYSIOLOGY OF THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

Author(s):  
Krista M. Nichols ◽  
Stephanie R. Miles-Richardson ◽  
Erin M. Snyder ◽  
John P. Giesy
1999 ◽  
Vol 18 (9) ◽  
pp. 2001-2012 ◽  
Author(s):  
Krista M. Nichols ◽  
Stephanie R. Miles-Richardson ◽  
Erin M. Snyder ◽  
John P. Giesy

2017 ◽  
Vol 599-600 ◽  
pp. 597-611 ◽  
Author(s):  
B. Gagnaire ◽  
C. Adam-Guillermin ◽  
A. Festarini ◽  
I. Cavalié ◽  
C. Della-Vedova ◽  
...  

Author(s):  
G. R. Tetreault ◽  
S. Kleywegt ◽  
P. Marjan ◽  
L. Bragg ◽  
M. Arlos ◽  
...  

Abstract Effluents from municipal wastewater treatment plants (MWTPs) are complex mixtures of chemicals including endocrine-disrupting compounds (EDCs) and 17α-ethynylestradiol (EE2). The objective of this study was to evaluate selected responses of two fish species, in two different years, exposed in situ to MWTP effluent. Biological markers of exposure (plasma vitellogenin (VTG) and antioxidant enzymes) were measured in two species of male fish, rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas), caged at sites associated with wastewater outfall. The estrogenicity of the final effluent in 2010 was determined to be 17.0 + 0.4 ng/L estrogen equivalents (EEQ) and reduced to 7.5 + 2.9 ng/L EEQ after infrastructure upgrades. Pharmaceuticals and personal care products in the effluent and surface water in both years confirmed the exposures at each downstream site. Despite the presence of estrogenic compounds in the MWTP effluent, no effluent-caged male fish demonstrated plasma VTG induction. Minnows and trout that received an intraperitoneal injection of 5 mg/g EE2 showed VTG induction at both field sites. In 2012, the liver somatic index (LSI) of both species increased with exposure, as did changes in antioxidant enzymes, and reactive oxygen species (ROS) activity. Multiple biological mechanisms are modified by effluent exposure, and multiple endpoints are needed to assess risk.


2009 ◽  
Vol 95 (3) ◽  
pp. 173-181 ◽  
Author(s):  
Anthony D. Sowers ◽  
Kristen M. Gaworecki ◽  
Marc A. Mills ◽  
Aaron P. Roberts ◽  
Stephen J. Klaine

2010 ◽  
Vol 45 (2) ◽  
pp. 187-200 ◽  
Author(s):  
Joanne L. Parrott ◽  
L. Mark Hewitt ◽  
Tibor G. Kovacs ◽  
Deborah L. MacLatchy ◽  
Pierre H. Martel ◽  
...  

Abstract To evaluate currently available bioassays for their use in investigating the causes of pulp and paper mill effluent effects on fish reproduction, the responses of wild white sucker (Catostomus commersoni) collected from the receiving environment at the bleached kraft mill at La Tuque, Quebec, were compared with responses of fathead minnow (Pimephales promelas) exposed to effluent in a laboratory lifecycle test. White sucker collected at effluent exposed sites had increased liver size but none of the reproductive effects that had been documented in earlier field studies at this site. Exposure to 1, 3, 10, 30, and 100% bleached kraft mill effluent (BKME) in the lab led to significantly decreased length, but increased weight and liver size in male fathead minnow. Female length was also decreased and liver size was increased at high effluent exposures. Most effluent concentrations (1 to 30%) significantly increased egg production compared with controls. The fathead minnow lifecycle assay mirrored the effects seen in wild fish captured downstream of the BKME discharge. These results will be used to select short-term fish tests for investigating the causes of and solutions to the effects of mill effluents on fish reproduction.


2021 ◽  
pp. 105884
Author(s):  
Roxanne Bérubé ◽  
Charles Gauthier ◽  
Thibault Bourdin ◽  
Marilou Bouffard ◽  
Gaëlle Triffault-Bouchet ◽  
...  

2014 ◽  
Vol 48 (14) ◽  
pp. 8179-8187 ◽  
Author(s):  
Laura E. Ellestad ◽  
Mary Cardon ◽  
Ian G. Chambers ◽  
Jennifer L. Farmer ◽  
Phillip Hartig ◽  
...  

1972 ◽  
Vol 29 (5) ◽  
pp. 583-587 ◽  
Author(s):  
A. R. Carlson

When fathead minnows (Pimephales promelas) were exposed to five concentrations (0.008–0.68 mg/liter) of the insecticide carbaryl for 9 months and throughout a life cycle, the highest concentration prevented reproduction and decreased survival. At the high concentration, testes contained motile sperm and ovaries were in a flaccid condition and appeared to be in a resorptive state. At the 0.68 mg/liter concentration, carbaryl appeared to contribute to mortality of larvae (produced by unexposed parents) within 30 days of hatching. Survival of young grown in the 0.008 mg/liter concentration was reduced. Since no demonstrable effects were noted for survival, growth, or reproduction at the 0.017, 0.062, and 0.21 mg/liter concentrations, this low survival value is considered not due to carbaryl. The 96-hr median tolerance concentration (TL 50) and the lethal threshold concentration (LTC) for 2-month-old fathead minnows were 9.0 mg/liter. The maximum acceptable toxicant concentration (MATC) for fathead minnows exposed to carbaryl in water with a hardness of 45.2 mg/liter and a pH of 7.5 lies between 0.21 and 0.68 mg/liter. The application factors (MATC/96-hr TL50 and MATC/LTC) both lie between 0.023 and 0.075.


Sign in / Sign up

Export Citation Format

Share Document